RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2016

FIRST YEAR [BATCH 2016-19] MATHEMATICS FOR ECONOMICS [General]

Date : 19/12/2016 Time : 11 am – 2 pm

Paper : I

Full Marks: 75

[Use a separate Answer Book for each Group]

$\underline{Group} - \underline{A}$

An	Answer any seven questions from Question No. 1 to 11:	
1.	$A = \{x \in \mathbb{R} \mid x \in [2,5]\} \text{ and } B = \{x \in \mathbb{R} \mid x \in (2,5)\} \text{ then } (A^c - B^c)^c = ?$	[5]
2.	a) Define injective and surjective mapping from a set <i>X</i> to another set <i>Y</i> .	[3]
	b) $f(x) = x^2 - 1, x \in \mathbb{Z}$, where \mathbb{Z} is the set of integers. Is $f(x)$ injective?	[2]
3.	a) State Archimedean property and Density property of real numbers.	[2]
	b) Assuming that between any two real numbers \exists a rational number, prove that between any two real numbers there also exist an irrational number.	[3]
4.	a) Prove that Union of two open sets is open.	[3]
	b) Give an example to show that intersection of an infinite collection of open sets may not be an open set.	[2]
5.	Find the set of limit points of the following subsets of $\mathbb R$:	
	a) The set of natural numbers.	[1]
	b) $\left\{m+\frac{1}{n} \mid m \in \mathbb{N}, n \in \mathbb{N}\right\}$, where \mathbb{N} is set of natural numbers.	[2]
	c) $\left\{x \in \mathbb{R} \mid x^2 < 1\right\}$.	[2]
6.	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$.	[5]
7.	a) Prove that if $\sum_{n=1}^{\infty} a_n$ is convergent then $\lim_{n \to \infty} a_n = 0$.	[3]
	b) Is the converse of the above statement true i.e. if $\lim_{n \to \infty} a_n = 0$ then whether $\sum_{n=1}^{\infty} a_n$ is	
	convergent.	[5]
8.	Test whether the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^n}$ is convergent or not.	[5]

- 9. a) Prove that every Cauchy sequence is a bounded sequence in \mathbb{R} . [3] [2]
 - b) Is the converse of the above statement is true? Justify.

- 10. Show that the sequence $\left\{\frac{3n+1}{n+2}\right\}$ is monotone increasing. Is the sequence convergent? Justify your answer. If convergent, then find it's limit.
- 11. Define Cauchy sequence. Prove that every convergent sequence is Cauchy sequence.

<u>Group – B</u>

Answer any four questions from Question No. 12 to 17 :

- If *n* be a positive integer, prove that $(1+i)^n + (1-i)^n = 2^{\frac{n+2}{2}} \cos \frac{n\pi}{4}$. 12. a) [3]
 - b) Let the operation '*' be defined on \mathbb{Z} (set of all integers) by a * b = a + 2b, $\forall a, b \in \mathbb{Z}$. Does there exist an identity element? If exist find the identity element. [2]

Show that the ring of matrices $S = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix}, a, b \in \mathbb{R} \right\}$ does not form a field. (\mathbb{R} is the set 13. a) of real numbers) [3]

- b) Prove that the matrix $\frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix}$ is orthogonal matrix. [2]
- If A and B are two orthogonal matrices of the same order then check whether 14. a)
 - (i) (A+B) is orthogonal or not?
 - (ii) $(A^{T} B)$ is orthogonal or not? $[1\frac{1}{2}+1\frac{1}{2}]$

b) Find the rank of the matrix $\begin{pmatrix} 2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3 \end{pmatrix}$. [2]

15. a) Define a non-singular matrix. [1] Is the sum of two non-singular matrix is non-singular? Justify. [2] b)

c) If
$$x + y + z = 0$$
, prove that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = 0$. [2]

16. Reduce the matrix
$$A = \begin{pmatrix} 1 & -1 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$
 to the normal form and hence determine it's rank. [5]

[4×5]

[5]

[5]

- 17. a) Find the value of $\frac{1}{F+2}(5x+3)$, where *E* is the shift operator taking h = 1. [3]
 - b) Prove that for a polynomial u_x of degree n in x, Δu_x will be a polynomial in x of degree n-1. [2]

Answer any two questions from Question No. 18 to 20 :

- Solve the difference equation $u_{x+2} 8u_{x+1} + 25u_x = 2x^2 + x + 1$. 18. a) [6]
 - b) Solve the equation $x^6 1 = 0$. [4]
- 19. a) Consider the set Q' of all rational numbers except '-1' and a binary operation '*' on Q'defined by $a * b = a + b + ab \forall a, b \in Q'$. Prove that (Q', *) is a group. [6]
 - b) Check whether the set $\{a+b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ forms a field? (\mathbb{Z} is the set of all integers) [4]
- 20. a) The first term of a sequence is 1, the second is 2, and every other term is the sum of the two preceding terms. Find the *n*th term. [5]
 - b) Prove that a real square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew symmetric matrix. [5]

_____ X _____

[2×10]